Vacuum-UV negative photoion spectroscopy of CF3Cl, CF3Br, and CF3I.

نویسندگان

  • M J Simpson
  • R P Tuckett
  • K F Dunn
  • C A Hunniford
  • C J Latimer
چکیده

Using synchrotron radiation, negative ions are detected by mass spectrometry following vacuum-UV photoexcitation of trifluorochloromethane (CF(3)Cl), trifluorobromomethane (CF(3)Br), and trifluoroiodomethane (CF(3)I). The anions F(-), X(-), F(2)(-), FX(-), CF(-), CF(2)(-), and CF(3)(-) are observed from all three molecules, where X = Cl, Br, or I, and their ion yields recorded in the range of 8-35 eV. With the exception of Br(-) and I(-), the anions observed show a linear dependence of signal with pressure, showing that they arise from unimolecular ion-pair dissociation. Dissociative electron attachment, following photoionization of CF(3)Br and CF(3)I as the source of low-energy electrons, is shown to dominate the observed Br(-) and I(-) signals, respectively. Cross sections for ion-pair formation are put onto an absolute scale by calibrating the signal strengths with those of F(-) from both SF(6) and CF(4). These anion cross sections are normalized to vacuum-UV absorption cross sections, where available, and the resulting quantum yields are reported. Anion appearance energies are used to calculate upper limits to 298 K bond dissociation energies for D(o)(CF(3)-X), which are consistent with literature values. We report new data for D(o)(CF(2)I(+)-F) < or = 2.7+/-0.2 eV and Delta(f)H(o)(298)(CF(2)I(+)) < or = (598+/-22) kJ mol(-1). No ion-pair formation is observed below the ionization energy of the parent molecule for CF(3)Cl and CF(3)Br, and only weak signals (in both I(-) and F(-)) are detected for CF(3)I. These observations suggest that neutral photodissociation is the dominant exit channel to Rydberg state photoexcitation at these lower energies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential impacts of CF3I on ozone as a replacement for CF3Br in aircraft applications

Iodotrifluoromethane (CF3I) has been considered to be a candidate replacement for bromotrifluoromethane (CF3Br), which is used in aircraft for fuel inerting and for fire fighting. In this study, the chemical effects of aircraftreleased CF3I on atmospheric ozone were examined with the University of Illinois at Urbana-Champaign two-dimensional chemical-radiative-transport (UIUC 2-D CRT) model. Us...

متن کامل

Femtosecond coincidence imaging of multichannel multiphoton dynamics.

The novel technique of femtosecond time-resolved photoelectron-photoion coincidence imaging is applied to unravel dissociative ionization processes in a polyatomic molecule. Femtosecond coincidence imaging of CF3I photodynamics illustrates how competing multiphoton dissociation pathways can be distinguished, which would be impossible using photoelectron or ion imaging alone. Ion-electron energy...

متن کامل

Swiss Light Source VUV beamline, Imaging photoelectron photoion coincidence spectroscopy

An imaging photoelectron photoion coincidence spectrometer at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source is presented and a few initial measurements are reported. Monochromatic synchrotron VUV radiation ionizes the cooled or ambient temperature gas-phase sample. Photoelectrons are velocity focused, with a resolution better than 1 meV in order to detect threshold electrons. ...

متن کامل

Tailoring the Energy Band Gap of Transition Metal Doped TiO2 Thin Film

Water splitting for hydrogen production under sunlight using TiO2 as photo catalyst provides a better route for solar energy and attracts the attention of many researchers. The photo catalytic activity of TiO2 under sunlight irradiation depends on the band gap energy. The transition metal doped TiO2 shows an edge over TiO2 in optical absorbance and photo catalytic activity. Thin film of Cr dope...

متن کامل

The UV-visible absorption cross-sections of IONO2

The UV-visible absorption spectrum of gaseous IONO2 has been measured over the wavelength range 245– 415 nm using the technique of laser photolysis with timeresolved UV-visible absorption spectroscopy. IONO2 was produced in situ in the gas phase by laser flash photolysis of NO2/CF3I/N2 mixtures. Post flash spectra were deconvolved to remove contributions to the observed absorption from other re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 130 19  شماره 

صفحات  -

تاریخ انتشار 2009